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1. INTRODUCTION

1.1 Objective and Scope

The solution of problems of elastic stress distributions in isotropic
materials has been considered in great detail in the literature but,
considering the recognized anisotropy of virtually all materials, relative-
ly little work has been done on similar problems involving anisotropy.

Once the assumption of isotropy %s discarded, analysis of any three-dimen-
sional problem becomes significantly more difficult. This is, of course,
due to the involvement of more than two elastic constants.

It is of note that a proportionately large number of general solutions
can be found for materials which are “"transversely isotropic" and have a
hexagonal close-packed crystalline structure. These materials have five
elastic constants. Although many solutions exist for this special case of
anisotropy, techniques vary widely and a clear attack has been difficult
to devise. .

The objective of this study is to develop an efficient and useful
technique for solving problems in a “"transversely isotropic" medium and,
more precisely, to present a solution for the problem of a tangential

force applied beneath the surface of a "transversely isotropic" half-space.

1.2 History and Concept of Sinqularities

In 1872, according to A.E.H. Love (1926)*, E. Betti first applied the

* An author's name followed by a date of publication refers to entries in
the List of References.




method of singularities to the théory of elasticity. Betti was able to
deduce an average strain formula for forces acting on an isotropic body
and found that this method was more effective than the method of series
as a tool for solving force transmission problems.

Lord Kelvin's solution of the problem of a concentrated force in an
unbounded isotropic medium when‘combined with Betti's method of singular-
ities allowed a family of singular solutions to be génerated. In an
isotropic medium, these singular solutions, generated by synthesis of the
Kelvin Solution, have been desigﬁated by A.E.H. Love (1926) as "nuclei of
strain". Such nuclei are obtained through superposition and Timiting
processes of differentiation and integration. Therefore, the derivative
of the Kelvin Solution in the direction of its force, generates what Love
called a "double force without moment" and is often referred to as a
férce doublet. HMoreover, the derivative of the Kelvin Solution perpen-
dicular to the direction of its force, generates a "double force with
moment". Superposition of three mutually perpendicular "double forces
without moment" creates a "center of di]atqtion" or a "center of com-
pression”, depending on the orientation of the forces, while the super-
position of two perpendicular "double forces with moment" which share the
same.axis, generate a "center of rotation". Clearly, all these solutions
are singular at a point.

Now, it is well to note that the stresses of the Kelvin solution
become infinite as E% as R, the distance from the observation point to the
point of application, approaches zero. This is denoted 0(5%4. Further
differentiation will yield solutions which are of yet higher order at the

point of application.




In addition to solutions which are singular at a point, line singular-
ities can also be generated. For example, integration of a solution for
a center of dilatation along, say, the z-axis from the origin to infinity,
yeilds a solution for a "line of dilatation". When this limiting process

is continued, "lower order singularities" are obtained.

1.3 History and Concept of Half-Space Problems

In the investigation of problems involving a plane boundary on an
infinite isotropic medium ("half-space"”), J. Boussinesq first presented
solutions for normal tractions and tangential displacements or normal
displacements and tangential tractions. At about the same time, V. Cerruti
obtained the sam2 results by another method. For this reason the problem
of the half-space is often referred to as the "problem of Boussinesq and
Cerruti”.

Soon afterwards, J.H. Michell (1900) obtained a solution for this
problem by yet another method. Love (1926) later presented his solutions
of the Boussinesq (concentrated force acting perpendicular to a plane
surface of an isotropic half-space) and the Cerruti (concentrated force
acting tangential to the plane surface of an isotropic half-space) problems
in which he used a method of solution involving singularities and refined
by C. Somigliana and G. Lauricella before the turn of the century.

Careful analysis of Michell's (1901) work indicates that he also
solved the problem of a vertical force acting at a point within a semi-
infinite isotropic solid. More recently, R.D. Mindlin (1936) rediscovered

this solution which now bears his name.




1.4 History and Concept of "Transverse Isotropy"

Materials or bodies which possess an axis of symmetry such that
perpendicular to any point along an axis the material behaves in the same
manner regardless of direction, are known as being "transversely isotropic".
This anisotropic material is sometimes called "hexagonal aeolotropic" or
"aeolotropic elastic" in the literature, but to avo%d confusion, only
Love's (1926) term, "transverse]y isotropic" will be used here.

In order to explain the meaning of a "transversely isotropic" medium,

let us adopt the notation:
T Nex 2 TS T P B3 SRl S-S
’ TE T Tax »Te T Txy 0 €1 T Oxx v €2 T &y .
3

€22 2 84 % Cyz 2 €5 T €,y » €5 T 4y, (1.4.1)

where t and e represent the Cartesian components of stress and "infini-

tesimal strain" respectively. The strains, are now defined by

aU]
e, = — 3
XX Ix D
.Y.y a:y seces
e = &. + 3}'_3_
yz Y3 dy

where [U1, UZ, U3] are the Cartesian scalar components of the displacemént

vector. The general linear stress-strain law now becomes:

- — S a— - I -
SR . T - —




T, = cij ej (1.4.2)

where i and j range over the integers one to six. A.E.H. Love (1926)

noted that for a homogeneous medium the cjj are constants and he showed

that:

%ij ° %i . (1.4.3)

is a necessary and sufficient condition for the existence of a strain-

energy function W(e],....,es) such that
i ae, : (1.4.4)
and that

1
W= 5 (1.4.5)

cijeiej
Love then imposed the condition of transverse isotropy and noted that
C;i; =0 (i =1,2,3; § =4,5,6), (i =4,5,6;j#1)

= €2 » C13= Cp3 » Cag = Co5 » 206 = Oy - Oy !

“h
Adopting the notation used by Eubanks and Sternberg (1954),
Cli=2 +C3=8,Cy=u,C=u,

Cig=a -2 ,C3=b,

it can be written (letting U1, U2 and U3 be the Cartesian components
of displacement) that:




e

6
al al al
St b _Npry 2 3
o%x - %3x * (a - 2u) 3y b3z
Ul au aU
s e ) ) )
L (a-2n) % + a 3y +b 53
al Ul Ul
S L) = e <
2z =b» 3% + b 5y + a =
Xz 3z 3X
N
yz 3z 3y
o ="EE§.+ ;-ggl - ]
xy ¥ ax 3y : (1.4.8)

These relations involve five independent constants. The physical
meaning of u and y is clear.
Eubanks and Sternberg (1954) also show that for the positive

definiteness of W, the following necessary and sufficient conditions exist:

a>0,5—>0’u>0’u—>0’

a3 -bk-37>0. (1.4.9)
or similarly:

E>0 E>0 u>0 u>0

level, 1-v> 55 (1.4.10)

R T S - — . O -— e ———




where
4 laz - b - ay
E = — 5
aa - b
E - aE-b :EIT
a-u
aE-bZ'ZE'u—
\) =
aa - bz,
_ 2w
O ' (1.4.11)
aa - b

The respective strain equations reduce to the following:

oV a_v

g
2| o =0 B Sk MIZ
ey tE E E
ag. v g 0'—
& = =XE o e £
ey E + E E
) oV o
s - X2 O Wy _Z
e, X -+ L (1.4.12)

It is interesting to examine the states of strain which result in

sume simple uni-axial loading (see Table 1.1).
/2

ey

abha




Table 1.1 STRAINS: UNI-AXIAL LOADING

o, = 1 °y = 1 o, = 1
°y By = 0 oy = g, = 0 o= °y =0

1 = v

&y E E T E
v 1 .Y

€y R E E
v .Y 1

& " E E E

It is also of interest to examine values of the constants mentioned

earlier for some materials which exhibit transversely isotropic behavior.

Magnesium, zinc and cadmium are three such materials (E11iott (1948) has
already worked with the properties of magnesium and zinc). Using data
from F. Seitz and T.A. Read (1941) and C.S. Barrett (1943) and using the
notation of Eubanks and Sternberg (1954), the values in Table 1.2 were

calculated for these materials.
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Table 1.2 ELASTIC CONSTANTS

MAGNESTUM ZINC CADMIUM UNITS
a .6493 x10'! | 16.3593 x10'! | 12.0587 x10'! dynes/cm?
a2 | 5.873¢ x10M! 6.2926 x10'' | 5.1326 «x10'! "
b .8103 x10'! 5.1666 x10'! | 4.4197 ij“ "
p .6807 x10'! 3.7879 x10'' | 1.8519 «x1io!! "
n .6667 x10*! 6.8493 x10'!' | 3.6232 «x10%! "
E .4843 x10'' | 11.9048 x10'' | 8.1301 x10'? "
E .0505 x10!! 3.4843 x10!! 2.8169 x1011 "
v .3453 -.1310 .1220 -
S | .2018 .9286 .7561 =
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Use of Tables 1.1 and 1.2 allows one to calculate the values listed

in Table 1.3 below:
Table 1.3 STRAIN RATIOS

DIRECTION OF UNI-AXIAL LOADING
X Y z
e e e
Y - . 3453 X - _.3453 2= 2273
e e e
X y z
MAGNESIUM
e e e
EE = -.2018 e—z = -.2018 x- -2
X y z
e e e
X - +.1310 X - +.1310 =Xvs <o
e e e
X y z
ZINC
e e e
2 - _.9286 2= _,9286 = ..2718
e, ey -
e e 5 e
X = 1220 X - _1220 X = _.2620
e e e
X y 4
CADHMIUM
e e i e L
2 - - 7561 e_z = -.7561 El= -.2620
x y z

Fn |

S ————— LR - —
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n

Observation of the values listed in Table 3 leads one to expect

Magnesium to be the most nearly isotropic of the three materials.

Furthermore, the fact that the strain ratios for both zinc and cadmium

fall outside the commonly encountered range for Poisson's ratio in

isotropic materials, (in addition to the large numerical differences between

E and E and, v and v for these materials) leads one to expect significant-

ly different behavior for zinc and cadmium than for some isotropic material

or nearly-isotropic material like magensium.

materials will be gi

ven in Chapter 5.

More discussion of these

The equations of equilibrium in terms of stresses are not modified

for an anisotropic material. On the other hand, in terms of displacements,

they have the following form:

220, 2y o, ( _)azu2 S 22U,
a—5+ + ¥ L+ (a- + (bty) —==0

Y i o " axay X3z

'azu2 _ azu2 azu2 aZU] 32U3

+ + + (a~u)—— + (btu)—= =0

a N T e (a E.)axay ( +u?ayaz
_dfu, A, B, : )azu] - 22U, .
a =+ qu +u + (bty)—— + (bHy) ——==

az2 3x2 ay? axaz 3ysz

(1.4.13)

These equations, of course, assume the standard form in the case of

isotropy where:

a=a=2u+ A

2(V~v)u
B PO

———

S e




i |

12

2w
b =Xz
=-=E
L T B (1.4.14)

A degeneracy is created for.the special case of (b+u) = 0 which
should be studied separately.
Transversely isotropic material has received reasonable attention

since 1. Fredholm (1900) treated certain specia] cases of anisotropy. He-

gave an implicit expression for Green's function for general anisotropic _
media and also solved the problem of an infinite transversely isotropic
materia1'acted upon by a concentrated force at a point in the medium
perpendicular or parallel to the axis of elastic symmetry. Fredholm also
implies the curl-potential solution of the equilibrium equations for
anisotropy. I

Michell (1900), in his somewhat obscurely written paper, presented the
primary foundation for the formulation for the general solution of the
problem of the half-space in transverse isotropy for arbitrarily prescribed
body forcas, surface tractions cad surface displacements. Al1 of the
singular problems for the half-space including those of Boussinesq, Cerruti,
Mindlin and the solution presented here, must be considered to be subsumed

in the formulations presented in Michell's remarkable paper. A summary of

Michells work is contained in Niedenfuhr (1964).

e e — - —— ey ST~ ——
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S.G. Lekhnitsky (1940) considered problems of torsionless axisymmetry.
He derived particular solutions by using a generalized form of Love's
~_Function and generated equations of equilibrium in terms of displacements
" with a single stress function which satisfied a fourth order partial
differential equation. R.A. Eubanks and E. Sternberg (1956) later provided
the completeness proof of Lekhnitsky's work.

After Lekhnitsky's presentation, H.A. El1liott (1948) solved the
torsionless rotationally-symmetric three-dimensional field equations in
terms of two stress functions, each of which satisfied a second-order
partial differential equation. Both Lekhnitsky's and El1liott's contribu-
tions are described by J.N. Goodier and P.G. Hodge (1958). Although
Elliott did not apply his method to a non-axisymmetric field, the general
solution he obtained is of relatively great importance. Elliott's approach
was also applied by L.E. Payne (1954), D.S. Berry and T.W. Sales (1961),
and A.H. England (1962) to problems with or without axisymmetry. B. Sharma
(1958) and, Z Massakaowska and W. Nowacki (1958) extended El1liott's approach
to problems in thermoelasticity.

Shortly after El1liott presented his résu]ts, R.T. Shield (1951) solved
the problem of an isolated line force uniformly distributed through a
transversely isotropic plate and acting parallel to the faces of the plate.
In the same paper, Shield solved the problem of a sub-surface vertical
force in a transversely isotropic medium, as well as the punch and flat
elliptical crack problems for such media. A treatise by A.E. Green and

W. Zerna (1954) outlines both Elliott's and Shield's contributions.
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A closed form solution of Green's function for transversely isotropic
materials was obtained by E. Kraner (1953). This problem had also been
studied by I.M. Lifshitz and L.N. Rozentsvieg (1947).

H.-C. Hu (1954,1956) solved the normal and tangential surface load
problems as well as the rigid stamp problem and the problem of the bending
of a thin elastic plate lying on a transversely isotropic half-space. He
was éﬁpareﬁtiy fhe fif;t Eo aBpiy.the iﬁb]igg ﬁfedhoﬁmuéufl-pofenffal
solution for the solving of non-axisymmetric problems in transverse isotropy.
A.S. Lodge (1955) interestingly, also found the third potential-function

solution but did not follow it up further.

The use of Fredholm's work and Kroner's closed form solution, allowed _

T.C. Woo and R.T. Shield (1962), (who were actually dealing with the gener-
al theory of small elastic deformations superimposed on large elastic
deformations) to also solve the significant problems of a concentrated sur-

fage force acting perpendicular or parallel to the plane boundary of a sgﬁﬁ:;“

infinite transversely isotropic medium. These same problems were again
solved by Y.-C. Pan and T.-W. Chou (1976) except that the results were
expressed in a slightly different form. ‘ -

The last ten years have seen the publication of many works on trans-
versely isotropic elasticity. A discussion of all of these is not wifhin

the scope of this study.
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1.5 Organization of the Study

In Chapter 2 a displacement-potential approach is presented for the
solution of problems in a transversely isotropic region and its complete-
ness for the general three-dimensional problem is proved. Some consequences
of this presentation are then discussed.

Chapter 3 provides a review of the method of singularities as a basis
for generating the singularities essential for the solution of more complex
problems. Solutions for some singularities for the case of transversely
isotropic media are provided.

Chapter 4 presents solutions of previously-solved half-space problems
for a transversely isotropic region.

Chapter 5 discusses the procedure and relationships that permit the
“application of the method of singularities to the solution of the problem of
a sub—surfaggﬂt§qggﬂfi§1_fgrge applied in a transver§g1y,igqﬁrpgip_mgdigm;__ﬂ
Some results are then plotted for materials which exhibit transversely

isotropic behavior.

Chapter 6 sumnmarizes the deve]opments'of this study and makes
recommendatiors for further study. The use of the method of singularities

to obtain solutions to other problems is also discussed.
1.6 Notation

Symbols are defined where they first appear. The symbols most

frequently used are listed below:




o |

ij

m|

k2(2=1,2)
My*

m
Ny *

N2

Q,*(2=1,2,3)

q2(2=1,2,3)

R

Rz*(2=]’2’3)

r

r2(2=1,2,3)

S

Ul . Uz ,U3

W

X,y,Z
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cjjand ¢y, in the Hookean matrix; elastic constant
C33 in the Hookean matrix; elastic constant
C13 and c33 in the Hookean matrix; elastic constant

elastic constants in the Hookean matrix

isotropy
second Young's modulus for transverse isotropy
Cartesian components of "infinitesimal strain™
constant defined by Equation (2.3.1)

Svy 2
ot - S

S\)l
Hl* +z - —
Va >
2 2 Sva
[vor +(z -2 1%
S\)z
* L
Np* + 2 = —

D (29) T
Q* + z-s

the distance from the observation point to the point
of application

o2 4 (z4s)’ Tt

2 2
[x +y 1%
Rz* +z+ s

a distance

displacements in the principal Cartesian coordinate
directions associated with x,y, and z respectively

strain energy function

the principal directions in the Cartesian coordinate
system

— ey ST - -

s I s e T
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u ¢, and cgs in the Hookean matrix; elastic constant

n ceg in the Hookean matrix; elastic constant

v Poisson's ratio; first Poisson's ratio for transverse
isotropy

v second Poisson's ratio for transverse isotropy

“z(z=]’2’3) constant defined by Equation(2.3.1)

cij stress

T Cartesian component of shear stress

& (2=1,2) volumetric potential function (irrotational)
¥ deviatoric potential function (equivoluminal)
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2. A DISPLACEMENT-POTENTIAL REPRESENTATION
FOR TRANSVERSE ISOTROPY

2.1 General

In this chapter, a representation for the displacements of transverse
isotropy in terms of three potential-functions which satisfy second order
linear partial differential equations is presented. 'It is shown that this
representation is complete for displacement fields in equilibrium. A

few consequences of this representation are then discussed.

2.2 Background

The Helmholtz representatfon of a vector function as the sum of the
gradient of a scalar and the curl of a vector function (Phillips (1933))
leads one to represent the elastic displacement field in this form and to
seek to uncouple the equilibrium equations. In the isotropic case this
approach leads to the Love-Galerkin representation and the Boussinesq-
Papkovich-Neuber representation. -

In a classic paper on anisotropy, Fredholm (1900} implies the existence
of both gradient-potential and curl-potential solutions of the equilibrium
equations for anisotropy, but apparently Lekhnitsky (1940) first explicity
stated a displacement potential approach for transverse isotropy which is
complete for a class of problems, namely those characterized by torsionless

axisymmetry for the case in which the axis 6f elastic symmetry coincides

with the axis of stress symmetry.

T T ————
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Elliott (1948) presented a gradient-potential solution in terms of
two potential functions each of which satisfy a second-order partial diff-
erential equation. Eubanks and Sternberg (1954) demonstrated the equival-
ence of the Elliott and Lekhnitsky representations and proved completeness
for the case of rotational symmetry.

Although Elliott's approach has been used to solve problems without
rotational symetry, Hu (1953) was apparently the first investigator to
introduce a cur]-potential.solution to accommodate a non-rotationally-
symmetric problem. Sub;eqhently, he and other investigators, presented
solutions which were based on two gradient-potential functions and a curl-
potential function but there was no certainty that all solutions of the
three-dimensional equations of equilibrium for transverse isotropy could
be represented in that way.

In the next section, this sufficiency is shown.

2.3 Displacement-Potential Representation

Let kik, = 1
A 4 i_ b 2
kl + k2 - 4 u%b.'.u)( hl)
5 ak ky(b+u) + ¢
\’1 = b+u - ukl a 5
ka(btu) + u
Vsl = =
2 b+u + uk, a
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\)32 =—E.
u
2 2 2

7.2 = I b v;2 & (i=1,2,3) (2.3.1)
ax2 ay? 322

Then a displacement field (U;,U;,U3) is a solution of the transvérsely
isotropic equations of equilibriym in a regular region V of space if and
only if it admits the following representation in terms of sufficiently

smooth potential functions'¢1,¢2, and .

345;1 34&2

= L= 43y
b=t ay
36, 34,
P St R |}
Uz 3y + 3y  3x
34, 34,
U3 = kl -aT-'l' k2 a—i— (2.3.2)
where
V-2 = .
1 ¢1 =
2 =
v2 2 0
v2y =0

in the region V.,

The fact that the above representation assures satisfaction of the

equations of equilibrium is easily verified by direct substitution into




oy
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the equilibrium equations. It remains to be shown that every displacement
field which is in equilibrium will admit this representation.

Let

P(x,y,z) and P'(x',y',2') be two boints in V and let

R=1pp' = [ (x-x)2+ (y-y")2+(z-2)20"
Let ¢'(x',y',z') be the value of the function ¢(x,y,z) at the point P'.
Given a displacement field (U, Uy, Us) in equilibrium we define the

displacement potentials:

b 2 ] ] ]
- ] '1'\)1 3U1 3U2 3U3 dv ]
ol i Rl e SET
v12-k12vp2 Jy  ax! y' ez
1-v,2 aly ' au,! au,*
wed D Ry
T ov2-k,2vi2 Jv o ax' ey ¥z’
]-\’3 3U' 3U2' ]
Y { =k - 1% (2.3.3)
v32 v ay' ax' .
Utilization of the relation:
go® G | paid g e el 5 db (2.3.4)
o y X' ay'? azt? R

permits one to verify that these functions do, indeed reproduce U;, Uy,
and U3, and that the defined functions satisfy the specified differential

equations as a result of the equilibrium of Uy', Us', Us'.

ol o e SRS Lo e

vy oy
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Although these representations formally break down when vlz = vzz,
the solutions which are obtained for the general case where “12 = v22

assume correct limiting forms.

2.4 Resultant Forces Expressed in Terms of Potential Functions.

The determination of the resultant force associgted with singular
solutions can be tedious for complicated stress fields. This task is great-
ly simplified if the potentials which generate the stress field are known.
In this section we demonstrate the procedure for the determination of the
z-direction and x-direction resultants of the tractions on the interior of
a hemispherical surface which is centered at tﬁe origin and which lies in
the lower half-space.

Let R = (x,y,z) be the position vector in space and consider a hemi-

spherical surface S: |R] = «, z < 0, with boundary ¢c: |R] =, z =0.

)

For the interior surface the normal vector is n = - = . On the curve C

Q|

we have

X = a COS 6

y = asine

so that the arc distance is given by s = a @ Stokes Theorem (Phillips,

1933) states that for a sufficiently smooth vector field F we have

fﬁ. curl F ds = fF. % ds (2.4.1.)
S c
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We can use this relationship to reduce the order of the integration required
to determine a resultant force on S in a given direction provided the
traction vector in that direction can be expressed as the curl of a vector.
When the prescribed direction is x, y, or z the equilibrium equations
require that the traction vector by solenoidal, hence the existance of a
formulation as the curl of a vector field is assured.

z-resultant, gradient so]ution:‘

We have -
2 ' 2
39, 3 ¢,
T ulkt1) 57+ ulk,*) 5557
52 2
%4y 3¢,
123 = u(kl 1) — 3y9z u(k2+]) 375?
o % w2hik +1)32¢ + v, 2u(k, +1)3—i”i (2.4.2)
33 = vyoulk; 0 vz u T .4.
and
(tr st st )Y=ocrl F i (2.4.3)

13 23 33

provided that

3y 3¢,
Wk #1) =+ ulpH) ==

F1 &
ad 3¢2
Fo = -ulk,+1) 5;1'-u(k2+1) TR
F, = 0 A (2.4.4)
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(Note that this determination is not unique.)

The force resultant in the z-direction is

z=fi-(r Lt .t ) da
S 13 23 33

*(~7sine +J cos 8) do _ (2.4.5)

[}

]
Sy

i

- 2

where 7 and j are unit vectors in the x-and y-directions.

In general cylindrical coordinates we have

X = p Ccos @
Y = psinoe
Z = 2z .
02 = X2 + y2 (2.4.6)
so that
. 3¢1 34’2
-F, sin 8 + F, cos & = -u(k;+1) 3;—-—u(k2+1)~§;—
and the resultant force can be written
2r 3¢, 2r 3¢,
Z= - a(k,*+1) fo 5o 48 -u a(k,+1) [0 55 9 (2.4.7)
39, 3¢, )
where o and 5 are evaluated on C, i.e. forp = a, 2 = 0.

An important special case arises for rotationally symmetric torsionless
fields, where ¢, and ¢, are independent of o.

in this case we have
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QR O

3¢ 3
Z==2rua [(kl‘"]) -—a;—*- (k2+'|) -a-—pi] z
, P

z resultant, curl solution

The stresses are given by
a2y

==

13 aysz

2
L, 22 o
23 3IxXez

n

T

0

T
33

and we find that

(T s T » T =Cur1?
13 23 33
if
- = - .. 9
Fy=Fp=0,F=uss

thus, the z-force is

2%
Z = o F.(-Tsinoa+jcose)de=0
o

x resultant - gradient solution:

324, a2y, _ 3%, 3%
c = (k) == (k) —— -2 (—+ —5)
11 1 222 2 222 ayz ayz
_ 324 3%y,
Ya 2u( 3y * axay )
—— e

——
~yo

R ndiaidian

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

—

abda




s

32¢, 324,
Tl3 = u(kl"']) m"’ u(kz"']) 30z (2.4.]2)
and
! » T Y =curl F 2.4.13
(111 G 113) cur ( )
provided
Fi =0 )
39, 3¢,
Fo = u(k 1) 57— + u(k,+1) 55
; —, 9% $,
Fo = 2 (50 572 (2.4.14)

The force in the x-direction is
X=[F-(t T T ) da
11 12 13
S2

2n
k1) o 292 d 2.4.15)
GIO ko 1+1)F +u(k2+1)a—z—]cose ] .4.

x-resultant -curl solution:

The stresses are given by

= 42
e T =
11 Xy

-t
[}

T SR T T — IS S 5

3
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and

(t--, 1t st )=curlF
1’ 127 13

provided that

)
Fij) = =p 5%%
Fp =0
F3=2;gjx)' - 3

2n
= 3_‘?; 3
a I Ly sin 68 de

Other required resultants can be computed wit

h similar techniques.

i
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3K BAS;C SINGULARITIES
3.1 General

This chapter considers the various singularities in a transversely
isotropic medium which are the necessary building-blocks in the method of
singularities. As mentioned in Section 1.2, many higher and lower order
singularities can be generated for isotropic media. Similar approaches
hold for transverse isotropy. This section will present only those
singularities which are of specific interest to the solution of the
problems in Chapters 4 and 5.

The three-dimensional Cartesian coordinatg system will be utilized
with the principal difections denoted by x, y and z. The z-direction
will always be considered the vertical direction, and the medium will

always have symmetry with respect to the z-axis.

3.2 Horizontal Unit-Force iﬁ the x-Direction

Love (1926), Kroner (1953), Hu (1954), Woo and Shield (1962), and,
Pan and Chou (1976) have used this solution for the case of transverse
isotropy in their work. The form presented here differs slightly from

their solutions but the stresses and displacements are the same.

at a st e

1
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2 2 2
Letting Bois O B8 (2= 1,2,3), the potential functions
are (see Figure 3.1)
2
oom—1 2 By 0 e
Vo gnu(k, 2-1) 2 Ak, 2-1) Sz
$, = > 5t 5 = 3 A }
41\';1(k.l -1) r r 4n'u(k1 -1) R, + 2
R v.2y
1 yz i) 1 3 ~
L BN R L + } = { } (3.2.1)
4 2 2 4wy Ry*z
The displacements and stresses are:
) 2 2 4.2 2 2
v, X v -k, %v, "X kv
u, = — = g Tt g 2 By

Yoamu(k®-1)  RR2)® R ami(k 2-1) R (Ry42)? Rytz

&y uyz % 2
1 2 F iy s.252)

+
47y 2
Ry(Ry+2)™  Ry+z

2 4
U 1 vlﬁxy 1 -k "vp Xy

= +
2oamu(k2-1)  RiR#2)? T Amu(k2-1) R, (R +2)?

[N ,
'I \)3 Xy

o 4w 2
R3(R3+z)

(3.2.3)
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k vlzx -k v.%x
v, = L — (= bt 127, (3.2.4)
4nu(kl -1) R, (R,*2) 4ru(k,"-1) R,(R,+2)

b 2 h2
. 1 X Zklv2 yz kl“z z i kl“l X°z :
2
au(k,-1)  Ry(R,2-2%)°  R,(R,2-2%) R,3(R,2-2%)
4 2 2 )
+%—{-2v3“ b2t B rE (3.2.5)
T R(RZ-ZP) RU(RZ-ZY)  RSA(R2-ZP)
. 2v “xyz v uxyz ——
GVZ=4}k T){ 1 +l }
T R (R 2-2P) R AR -
Y Y
, n 2k, v, "xyz L klv2 Xyz
4n(k1-]) Rz(Rzz_zz)z R23(R22-22)
1 2v3“xyz vsuxyz ( |
P “ } 3.2.6
4z Rs(Rsz z2)2 R33(R32-z2) .
Y Y
22 = = } + { } * s
WD) R ek -1 R ——

* Woo ‘and Shield's (1962) evaluation of L. at z=0 contains a typographical
error.

r—— e e




]

31

7N A
vlsxy b4 v, xR

6
3v1 xyle

= - - +
X v ?(k2-1) R1A(R 22 (RZ-22)? (R2-2%)°

Sv nyzz2
gt |

,

2 22y3 ¥
R, (R *-2°)

2 6_..2_4 2 4
k1 v, Xy'z k1 v, XR,

1

2
3k1 vzsxysz

{+ + -
2ﬂV32(k12‘]) R23(R22‘12)3 (R22-22)2 (R22_22)3

2 6 22
i Sk1 v, Xxy“z klvzzvazx(k1+1)
4 2 2 4 2 4 2
) _l.{- vy Xy“z V3 XRy 3vy xy"Ry  Svyxy 20
2n

T

6. .2
3v1 xy“R,

L
vlsxaz

= +
Snd 22D 20242 2 e
Ry (R3 -2°) (Ry°-z ) (R3 -2°) Ry (R3°-2%)

(3.2.8)

3v16x22(x2-y2)

- +

c -
W2 k21 (R2-22)3 R P(R2-2%)°

2. 2
vy v x (k. +1)
¢ ) [ 1 }

1 3k12v26xy2R2

e
RI(R1 -z%)

2 6.3_4
k1 v, X2

3
2R,

6 2 2
3k12v2 xz (x%-y?%) kyvy v32x(k1+1)

+ (+
2“v32(k12-])

2 _2:\3
R, (R,“-2°)

3_4
vsux Z
+

3v3“xzz(x2-y2)

3rp 2 243
R, (R3 -z°)

2 243
R3(R3 -z%)

3
(Rzz‘zz)

Sigm. 223219
Ro RS <=2

=
(R32-22)3

(3.2.9)
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2 2 2
I 1 s 8v16x YR, ) vluy(Rlz-vlzx )+ Zvlsy(2v12x2+R1 )}
Yook 2 (R 227 R 3(R,2-22) R, (R, 2-2%)2
: kpv,® By 8k 2u,8x2yR,
+ +

2mv,2(k,2-1)  R,3(Ry2-22)  (Rp2-22)3

k,2v2"y(v22y2-3v,2x2-2R,2
+ }
Ry (R,2-22)2

1, Y3 valy(2ua®xB6R,%)  Tugty?

R33 R33(R32-22) R3(R32'22)2

(3.2.10)

3.3 Vertical Unit-Force in the z-Direction

See Figure 3.2, we have

21

>

— { k; log S
8mu (ky12-1) Ri~-2

)+ 2k, log r }

—]_ {‘kl ]Og ( R1+Z )}
4mu(ky2-1)

ek 10 (i
8wu(k1 -1) 2

) -2k; log r}

1

e {-kl 1og (Rz"‘Z) }
4mu(ky2-1)

—— it e B s
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The displacements and stresses become:
kyvq2xz kyv,2xz
U = - - kst (3.3.2)
4mu(k,2-1)  Ry(Ri2-22)  4mu(ky2-1) Ry(Rp2-22)
kyvy2yz kyvo2yz
Uy = — . el el { (3.3.3)
4mu(ky2-1)  Ry(Ry2-22)  4mu(ky2-1) Ry (Rp2-22)
ky 2 | .
U; = 1 ot 1 { - ﬁl } (3.3.4)
4mu(ky2-1) ~ ™M 4mu (ky2-1) 2
kyvy2x v,2x
0py = ——— {- y o+ L { —) (3.3.5)
4n(ky-1) R,3 4n(ky -1) R,3
kyvy 2y v 2y
Oy = —— (- }+ { } (3.3.6)
4ﬂ(k1']) R13 4Tf(k1-]) R23
klvlzz . \’222
0, = e e 2 { } (3.3.7) .
4n(k,-1) R, 3 4n(k,-1) Ry )
1 akyv;2z 2ak,v,*yz(x-y) ak,v,*yz(x-y)
o = + -
X 8mu(ky2-1)  Ry(Ry2-22) Ry (Ry2-22)2 Ry 3(Ry2-22)
akl\leZ bklzz 4;Tk1v1"xyz . 21Tk1v1"xyz
+ = - -
R13 Rla RI(R12_22)2 R13(R12-22)

L] akyvy2z 2ak1v2"yz(x-_y)+ aky v, *yz(x-y)
4mu(k12-1) = Ry(Ry2-22) R,(Ry2-22)2 R, 3 (Ry2-22)
akyv,2z duk,vatxyz  2ukyvoxyz

- A - S 2, - B s (3.3.8)

R23 R23 RZ(RZZ-ZZ)Z R23(R22-22)
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1 akyvy2z  2akyvytyz(x-y) akyv,*yz(x-y)
g = + -
Yy 41Tu(k12']) Rl(Rlz-Zz) RI(RIZ‘ZZ)Z R13(R12'Zz)

+ -
R13 R13 Rl(Rlz-Zz)z R13(R12-22)

akyvi2z  bk,2z . 4uk, v, *y2z . 2uky vy *y2z

] akyv,22z 2akyvytyz(x-y) akyvytyz(x-y)
+

4mu(ky2-1)  Ry(Rp2-22) R (Rp2-22)2 R, 3(R,2-22)

akpvp?z Clukyvoty?z 2ukyv,ty?z
+ -

- = (3.3.9)
R,3 Rz3  Ry(Rp2-22)2 R, 3(Ry2-22)
] 2k, v, *xyz kivy *xyz
G = T e
Xy va32(ki2-1) Rl(Rlz'Zz)2 R13(R12'22)
2kyv,*xyz kyv,*xyz
s sl el & (3.3.10)

" 2mv32(k,2-1) Ry(Rp2-22)2  R,3(R,2-22)

3.4 Double Force Without Moment

The derivative of the Xelvin solution in the direction of its force
generates what Love (1926) called a "double force without moment".
Computing this force doublet from the forcd in the x-direction yields the
potentials (see Figure 3.3(a)):

2 2
1 ; x222 ¥°R, . 2 2x°z

1 4mu(ky2-1)  rR, rtor2 r

or,

T R S e e
v
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1 v1°x2
¢1 = { — \’12 }
4nu(ky;2-1)  Ry(Ry+z)2
) ; k,2x222 k%2R, Kkj2z 2k 2x%z
¢ = ——— (- + - + }
2 4mu(ky2-1) ol rt r2 rt
ky2v uxz
1 172 »
4ﬂu(k12']) Rz(R2+Z)2 '
3 o 41 (- gyzz 1 ¥y83 + 2x¥2
i r*Ry " r* ot
y
v3Xy
=L (- } (3.4.1)

4y R3(R3+Z)2

Similarly (see Figure 3.3(b)) for a force doublet in the z-direction the

potentials are:

4 = —L g
! 4mu(ky2-1) Ry

Nt Ky o [
2 dmu(k2-1) R

vy =0

This singularity is, of cousse, axially symmetrical about the z-axis
and therefore, and as expected, the deviatoric potential y is equal to
zero.

The double force without moment is not explicitly used in the solution

of problems in Chapters 4 and 5. Therefore, the stresses are not presented

R e . T T . e P — - -

popy
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here.

3.5 Center of Dilatation

Superposing three "double forces without moment"” which are mutually
orthogonal, creates a "center of dilatation" or a "center of compression"
depending on the orientation of the forces. Therefore a "center of

dilatation" assumes the form (see Figure 3.4):

e ky=vy?
Vo m(ky2-1) Ry

2 fau(ky2-1) Ry
v =0

The center of dilatation is not explicitly used in the solution of

problems in Chapters 4 and 5 and, therefore the displacements and

stresses are omitted.

3.6 Line of Dilatation

Line singularities can also be generated in addition to those which
are singutar at a point. One such line may be, say, one which extends
along the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>